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Short Papers

Small-Signal Second-Harmonic Generation by a

Nonlinear Transmission Lhe
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Abstract — Second-harmonic generation (SHG) hy a relatively low-loss

transmission line having a capacitive nonlinearity is treated with an ex-

tended small-signal analysis. This simple theory brings out the relevance of

“phase matching” the fundamental- and second-harmonic waves and of

reducing losses in order to optimize SHG. It is shown that maximum SHG

will occur when the line is short compared with its “coherence length” and

has radian electrical length eqnal to twice its “transmission Q” at the

second-harmonic frequency. The product of a line’s “transmission Q” and

its “nonlinearity factor” should be maximized to obtain maximum ef-

ficiency and is, therefore, believed to be a useful figure of merit for

comparing the SHG potential of different transmission-line implementa-

tions.

1. INTRODUCTION

In recent years, nonlinear capacitances such as varactors and

Schottky-barrier diodes have proven very useful as harmonic

generators at microwave and submicrowave frequencies [1]. These

devices have traditionally been lumped-parameter devices in

which the nonlinear interactions take place over distances that

are small in comparison with a wavelength. As frequency in-

creases, however, lumped-parameter devices necessarily become

smaller and ultimately reach fundamental limitations imposed by

the increased series resistance and/or parasitic capacitance [2].

Nonlinear interactions in distributed devices take place over

distances that may be comparable to, or even larger than, a

wavelength [3], [4]. Accordingly, such devices are not subject to

the same limitations as lumped-parameter devices. Instead, the

fundamental problem of distributed devices is that of obtaining

structures having sufficiently small losses that distributed nonlin-

earities can be properly exploited [5]. Recent work on Schottky-

barrier and MIS transmission lines fabricated on semiconductor

substrates has indicated that several such nonlinear structures

may indeed demonstrate relatively low-loss propagation in their

“slow wave” regimes of operation [6]- [15].

A simple small-signaf treatment of second-harmonic generation

(SHG) by waves propagating on a transmission line having a

capacitance nonlinearity is presented below. The relevance of

“phase matching” and the importance of minimizing losses are

readily apparent from this simple theory. It is shown that for a

line that is short compared with its “coherence length,” maxi-

mum SHG will occur when the line’s radian electrical length is

equaf to twice its “transmission Q” at the second-harmonic
frequency. In addition, the conversion efficiency is found to be

proportional to the square of the product of the line’s transmis-

sion Q” and its “nonlinearity factor.” Accordingly, this product

Manuscript received April 24.1985 i revised October 18.1985. This material
1s based in part upon work supported by the U.S. Army Research Office and
the National Science Foundation under Grant No. ECS-83-16246.

The authors are with the Department of Electrical Engineering, Umverslty of
Minnesota, Minneapohs, MN 55455.

IEEE Log NUmber 8406858.

g)
Ldz Rdz

+

1+Gdz Cdz
V(z,t)

~dz -~
Fig. 1. Differential length of nonlinear transmnsion line.

is believed to be a useful figure of merit for comparing potentiaf

SHG of different transmissiomline implementations.

II. THEORY

Consider quasi-TEM waves, identified by voltage u ( z, t) and

current i ( z, t), propagating along a two-conductor transmission

line. Let ~, R, C, and G represent the line’s series inductance,

series resistance, shunt capacitance, and shunt conductance, re-

spectively, each per unit length. Fig. 1 depicts a differential

length dz of the transmission line.

Assume that the shunt capacitance c of the line possesses a

nonlinear voltage-charge relationship that can be expanded in a

convergent Taylor’s series

1
q(u) =q(vo)+ q’(vo){u –vo}+zq’’( vo){u–h}z+ ”””

(1)

where q is the stored charge per unit length, and V. is the dc bias

voltage. Kirchoff’s laws written for a differential length of line

yield

di i?q

z=
–Gv-%

and

av
_=_ R1_L!!
az at

(2)

(3)

Eliminating i between (2) and (3) leads to the second-order

partial differential equation

a20 dzq
>–GRv– GL; –R:– L2=0. (4)

If w is the lowest frequency sinusoidal component of v, one

can expand v and q in complex Fourier series as follows:

and

q(z, t) =Qo(z)+ ~ {Q,, (z)e/no’ +Q~(z)e-’no’}. (6)
~=1
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Substituting (5) and (6) into (4) and equating the terms yields

$~, -G{ R+,jn~~}~, –(jnu){R +jn~~}Q,, =O

forn=l,2,3 . . . . (7)

Equation (7) represents a system of coupled linear differential

equations relating the ~ and Q,, coefficients. By substituting (5)

and (6) into (1) while assuming that harmonic voltage terms are

small compared with VI, one finds that, to the second order, these

coefficients are also related by

Qo = q(n) + q“{ Vo)vlV~

Ql=#(J6)L
q“( ~) ~2,

QZ=w’w+-y - 1 (8)

Thus, the QN coefficients can be systematically eliminated be-

tween (7) and (8). For n = 1 and 2, this procedure leads to

d2
-@-y;vl=o (9)

and

where

Y. = a,, + J~,t

={ G+jnaq’}1’’’2{R +jnuL}1”2 (11)

and

82=tan’l{G\2uq’}. (12)

Equation (9) is recognized as the usuaf homogeneous wave
equation for the fnndamentaf frequency voltage VI. This funda-
mental voltage wave serves as the “forcing function” for the
second-harmonic voltage wave Vz according to (10). Assuming
for simplicity that only the positive-traveling fundamental wave is
excited, the solution to (9) is of the form

VI(2) =Vl(0)e-y”. (13)

By substituting (13) into (10) and solving the resultant inhomo-

geneous differential equation, one obtains the second-harmonic
particular integraf

[

yjKNV/ (0) ze–yz’
~z(z) = (2yl+y2)(l-jt~a2) l[ei:l~:~’l’14)

where KN is a “’nonlinearity factor” defined by

KM* ( q“/2q’) . (15)

Equation (14) satisfies the boundary conditions ~2 (0) =

K(m) =0,

If one utilizes (11) along with the assumption of relatively

small losses

Gezaq’

R << 2uL (16)

one can approximate (14) by

~z(z) s (*) KNV~(0)(j&z) e-’2’F(+) (17)

o~
o If 211 3rl 4fI 0

Fig. 2. Magnitude of “coherence function” F(o)

where F(o) is a “coherence function” given by

with @ defined by

$=– j(2yl–y2)z. (19)

If losses are small, @ is nearly real and can be written ap-

proximately

l#=(2&–&)z. (20)

The magnitude of the “coherence function” F(4) is plotted for

real @ in Fig. 2. One sees that IFl has a maximum of unity at

@= O and passes through zero for 4 = 2 nm. From this result, we
define the “coherence length” z, by

z, = 27r/(2/11 – &). (21)

For z << z,, the fundamental frequency and second-harmonic

waves propagate together and interfere constructively. As z ap-

proaches z<, however, the two waves get “out of step” and

destructive interference results. With pure TEM waves on lossless

lines, /31 = 2/31 so that z,= m. With quasi-TEM waves, however,

z, will be finite.

Let z, be the totaf line length. For z, < ( ZC/4), (17) leads to the

approximation

lh(zf)l=(i)~~~j(o)pz{z,e-”’”} (22)

which describes a propagating second-harmonic wave that is

simultaneously growing linearly and attenuating exponentially.

The optimum length of the transmission line is the length for

which {z, e ‘“z’1 } is maximum. By differentiation, one finds that

Zopt =1/a2 (23)

Thus, the optimum electrical length of the line can be written

(F2zopt) = 2Q2 (24)

where

Q2=(132/za2) (25)

is the “transmission Q” of the line at the frequency w~. Sub-

stituting (24) into (22) yields the maximum second-harmonic

output voltage

/ MZopt) / = (0.37) Q2KNV:(0). (26)

The maximum conversion efficiency, obtained under these same
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conditions, is therefore

lL(%pt)12 ~loo%
Eff ( Z.P, ) = VP (0)

= {(o.37)Q,KNV,(0)}’ x1OO% (27)

which is seen-to be proportional to ( Q2 K~ )2.

III. CONCLUSION

According to the simple small-signaf theory presented above,

the largest SHG of a relatively low-loss transmission line will

occur when the transmission line satisfies both the coherence

condition

z, < ( zc/4) (28)

and the optwnum length condition

(B2z,)=2Q2. (29)

Further, the maximum obtainable SHG is seen to be propor-

tional to the square of the ( Q2 K~ ) product. Accordingly, trade-

offs between the “transmission Q” and the “nonlinearity y factor”

may be possible which will maximize this product for a particular

line implementation. The simple. theory also shows that conver-

sion efficiency is proportional to the square of the input voltage.

Note, however, that (27) assumes l~z 1< 1P’,] and that third- and

higher order terms in the Taylor’s series expansion of (1) have

been systematically ignored. Thus, this result can be rigorously

justified only for small input signals satisfying

v,(o) < {3q”/q ‘“ }. (30)
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Transient Analysis of a Directional Coupler Using a

Coupled Mlcrostrip Slot line

in Three-Dimensional Space

SHOICHI KOIKE, NORINOBU YOSHIDA,

AND ICHIRO FUKAI

Abstract —In reeent MIC techniques, double-sided MIC has been studied

because its advantages in propagation characteristics are greater than that

of conventional MIC’S. A coupled microstrip slotline is one of them. Its

application to various circuit elements has often been dkcussed. But the

coupled microstrip slotline is essentially three-dimensionaf stmctare, so the

analysis demands a rigorous three-dimensional treatment. Also, the recent

high-speed pulse technique demands analysis in the time domain. The

present paper treats a directional coupler using the coupled microstrip

slotline in tftree-dlmensionaf space and time. The res@ts of the dhectional

coupler analysis is presented with the complicated time variation of the

three-dimensional electromagnetic field. So, the mechanism of the direc-

tional coupling phenomena that is produced by the propagation characteris-

tics of the even and odd modes is presented in the time domain, In

particular, the instantaneous diagram of the Poynting vector details the

energy flow iu the transient process. For the analysis of the characteristics

of the complex microwave device, these results present the utiffties of the

various field distributions that are obtained by the three-dimensional vector

analysis in the time domain.

I. INTRODUCTION

In recent MIC techniques, a double-sided MIC has been studied

extensively because of its advantages in propagation chrtracteris-

tics over the conventional MIC. A coupled microstrip slotline is

one of the fundamental structures of the double-sided MIC. The

structure is as follows: the stripline is on one side of the dielectric

substrate and the slotline is on the other side. The coupled

stripline slotline has properties that the dispersion characteristics

and the characteristic impedance are controlled sensitively ~d

extensively by changing the geometrical dimension. The design of

the directional coupler by use of the microstrip slotline was

proposed by F. C. de Ronde in 1970, [1] its theoretical considera-

tion was given by B. Schick, [2], [3], the synthetic method of the

design and experimental results were performed by H. Ogawa,

[4], [5], and the design with compensation slotlines and the

comparison with the experiment were presented by R. K.

Hoffmann [6], [7]. The conventional MIC based on the stripline

has been treated by a two-dimensiortal analysis. But, the coupled

microstrip slotline is essentially a three-dimensional structure, so

the analysis demands a rigorous three-dimensional treatment.

Also, the recent development of high-speed pulse techniques

demands the analysis in the time domain. The transient analysis

of the electromagnetic field is not only useful in cltifying the

field response but also yields information on the mechanism by
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