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Small-Signal Second-Harmonic Generation by a
Nonlinear Transmission Line

KEITH S. CHAMPLIN, MEMBER, IEEE, AND
DONALD R. SINGH, MEMBER, IEEE

Abstract —Second-harmonic generation (SHG) by a relatively low-loss
transmission line having a capacitive nonlinearity is treated with an ex-
tended small-signal analysis. This simple theory brings out the relevance of
“phase matching” the fundamental- and second-harmonic waves and of
reducing losses in order to optimize SHG. It is shown that maximum SHG
will occur when the line is short compared with its “coherence length” and
has radian electrical length equal to twice its “transmission Q” at the
second-harmonic frequency. The product of a line’s “transmission 0 and
its “nonlinearity factor” should be maximized to obtain maximum ef-
ficiency and is, therefore, believed to be a useful figure of merit for
comparing the SHG potential of different transmission-line implementa-
tions.

1. INTRODUCTION

In recent years, nonlinear capacitances such as varactors and
Schottky-barrier diodes have proven very useful as harmonic
generators at microwave and submicrowave frequencies [1]. These
devices have traditionally been lumped-parameter devices in
which the nonlinear interactions take place over distances that
are small in comparison with a wavelength. As frequency in-
creases, however, lumped-parameter devices necessarily become
smaller and ultimately reach fundamental limitations imposed by
the increased series resistance and/or parasitic capacitance [2].

Nonlinear interactions in distributed devices take place over
distances that may be comparable to, or even larger than, a
wavelength [3], [4]. Accordingly, such devices are not subject to
the same limitations as lumped-parameter devices. Instead, the
fundamental problem of distributed devices is that of obtaining
structures having sufficiently small losses that distributed nonlin-
earities can be properly exploited [5]. Recent work on Schottky-
barrier and MIS transmission lines fabricated on semiconductor
substrates has indicated that several such nonlinear structures
may indeed demonstrate relatively low-loss propagation in their
“slow wave” regimes of operation [6]-[15].

A simple small-signal treatment of second-harmonic generation
(SHG) by waves propagating on a transmission line having a
capacitance nonlinearity is presented below. The relevance of
“phase matching” and the importance of minimizing losses are
readily apparent from this simple theory. It is shown that for a
line that is short compared with its “coherence length,” maxi-
mum SHG will occur when the line’s radian electrical length is
equal to twice its “transmission Q” at the second-harmonic
frequency. In addition, the conversion efficiency is found to be
proportional to the square of the product of the line’s transmis-
sion Q” and its “nonlinearity factor.” Accordingly, this product
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Fig. 1. Differential length of nonlinear transmmssion line.

is believed to be a useful figure of merit for comparing potential
SHG of different transmission-line implementations.

II. THEORY

Consider quasi-TEM waves, identified by voltage v(z,t) and
current i(z,1), propagating along a two-conductor transmission
line. Let L, R, C, and G represent the line’s series inductance,
series resistance, shunt capacitance, and shunt conductance, re-
spectively, each per unit length. Fig. 1 depicts a differential
length dz of the transmission line.

Assume that the shunt capacitance C of the line possesses a
nonlinear voltage-charge relationship that can be expanded in a
convergent Taylor’s series

a(0) = a0 + ¢ U) (0 Vo) + " () (o= Vo '+ -+
&

where g is the stored charge per unit length, and ¥, is the dc bias
voltage. Kirchoff’s laws written for a differential length of line
yield

adi dq
EZR @
and
dv di
5. Ry, 3)

Eliminating i between (2) and (3) leads to the second-order
partial differential equation

d*v dv dq dq
—_GRU*‘GL———R——L"B—P“=

0. 4
3z? at at (4)

If w is the lowest frequency sinusoidal component of v, one
can expand v and g in complex Fourier series as follows:

v(z.)=Vo+ X {V(D)em +Vx(2)e '} (5)
n=1
and

g(z,8) =Qq(2)+ il{Q"(z)e/an_l—Q:(Z)emwt}- (6)
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Substituting (5) and (6) into (4) and equating the terms yields
d2

V= G(R+ jnaL}V, ~(jnw){R + jnoL}Q, =0
Z

forn=1,2,3---. (7)

Equation (7) represents a system of coupled linear differential
equations relating the ¥, and Q, coefficients. By substituting (5)
and (6) into (1) while assuming that harmonic voltage terms are
small compared with ¥, one finds that, to the second order, these
coefficients are also related by

Qo=q(Vp) + q" (Vo) ViVe*
O =q¢(Vp)V
Q=g (V)Vo+

Thus, the Q, coefficients can be systematically eliminated be-
tween (7) and (8). For n =1 and 2, this procedure leads to

W,

d?
"'Z‘Z'EVl*leVl=0 (9
and
2 2 1 ’
L Vimsiri- [%f"j—fai%]v (10
where
Yo 7 Oy Py
={G+ jnwg }'*{R+ jnwL}'/? (11)
and
8, =tan"' {G2wyq’}. (12)

Equation (9) is recognized as the usual homogeneous wave
equation for the fundamental frequency voltage V;. This funda-
mental voltage wave serves as the “forcing function” for the
second-harmonic voltage wave ¥, according to (10). Assuming
for simplicity that only the positive-traveling fundamental wave is
excited, the solution to (9) is of the form

Vi(2) =Vi(0)e . (13)

By substituting (13) into (10) and solving the resultant inhomo-
geneous differential equation, one obtains the second-harmonic
particular integral

2 2 —Yy2 -@2n—v)z
i Ky Vi (0)ze ™ emCnmz g
Va(z) =

; 14
2y +1)(1—jtano,) 2n—v)z ] (14
where K is a ““nonlinearity factor” defined by
Kn=(q"/2¢). (13)

Equation (14) satisfies the boundary conditions V,(0) =
Va(e0) = 0.

If one utilizes (11) along with the assumption of relatively
small losses

G<xlug
R<2wL (16)
one can approximate (14) by
Va(z2) = (3) KV (0)(iaz) e F(9$) (17)
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where F(¢) is a “coherence function” given by

1 in
} =Ae—1¢/2[%;242.),] (13)

et —

Jj¢

F(¢)={

with ¢ defined by
¢=—j(2n-n)z (19)

If losses are small, ¢ is nearly real and can be written ap-
proximately

¢=(2B—B,)z.

The magnitude of the “coherence function” F(¢) is plotted for
real ¢ in Fig. 2. One sees that |F| has a maximum of unity at
¢ = 0 and passes through zero for ¢ = 2n#. From this result, we
define the “coherence length” z_ by

z.=27/(2B, - B.). (21

For z <z, the fundamental frequency and second-harmonic
waves propagate together and interfere constructively. As z ap-
proaches z, , however, the two waves get “out of step” and
destructive interference results. With pure TEM waves on lossless
lines, B, = 28, so that z, = co. With quasi-TEM waves, however,
z, will be finite.

Let z, be the total line length. For z, < (z, /4), (17) leads to the
approximation

[Vi(z)| = (3) KW VE(0) Bo 2,672} (22)

which describes a propagating second-harmonic wave that is
simultaneously growing linearly and attenuating exponentially.
The optimum length of the transmission line is the length for
which {z,e”*%} is maximum. By differentiation, one finds that

(23)
Thus, the optimum electrical length of the line can be written

(Bazop) =20, (29

(20)

Zope =1/a;.

where
Q,=(B,/2a;) (25)

is the “transmission Q” of the line at the frequency w,. Sub-
stituting (24) into (22) yields the maximum second-harmonic
output voltage

[V2(Zop) | = (0.37) @, K V7 (0). (26)

The maximum conversion efficiency, obtained under these same
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conditions, is therefore

IVZ(Zopt) [2

X 100%
V2(0) ’

Eff( zopt) =

= {(031) 0, Ky (0)} x100%  (27)

which is seen-to be proportional to (Q,Ky)>.

IIL

According to the simple small-signal theory presented above,
the largest SHG of a relatively low-loss transmission line will
occur when the transmission line satisfies both the coherence
condition

CONCLUSION

z,<(z./4) (28)
and the optimum length condition
(B22)) =20,. (29)

Further, the maximum obtainable SHG is seen to be propor-
tional to the square of the (Q, K, ) product. Accordingly, trade-
offs between the “transmission Q” and the “nonlinearity factor”
may be possible which will maximize this product for a particular
line implementation. The simple theory also shows that conver-
sion efficiency is proportional to the square of the input voltage.
Note, however, that (27) assumes |V,| < |V;| and that third- and
higher order terms in the Taylor’s series expansion of (1) have
been systematically ignored. Thus, this result can be rigorously
justified only for small input signals satisfying

1(0) < {3¢"/q" }.

(30)
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Transient Analysis of a Directional Coupler Using a
Coupled Microstrip Slot line
in Three-Dimensional Space

SHOICHI KOIKE, NORINOBU YOSHIDA,
AND ICHIRO FUKAI

Abstract —In recent MIC techniques, double-sided MIC has been studied
because its advantages in propagation characteristics are greater than that
of conventional MIC’s. A coupled microstrip slotline is one of them. Its
application to various circuit elements has often been discussed. But the
coupled microstrip slotline is essentially three-dimensijonal structure, so the
analysis demands a rigorous three-dimensional treatment. Also, the recent
high-speed pulse technique demands analysis in the time domain. The
present paper treats a directional coupler using the coupled microstrip
slotline in three-dimensional space and time. The results of the directional
coupler analysis is presented with the complicated time variation of the
three-dimensional electromagnetic field. So, the mechanism of the direc-
tional coupling phenomena that is produced by the propagation characteris-
tics of the even and odd modes is presented in the time domain, In
particular, the instantaneous diagram of the Poynting vector details the
energy flow in the transient process. For the analysis of the characteristics
of the complex microwave device, these results present the utilities of the
various field distributions that are obtained by the three-dimensional vector
analysis in the time domain.

I. INTRODUCTION

In recent MIC techniques, a double-sided MIC has been studied
extensively because of its advantages in propagation characteris-
tics over the conventional MIC. A coupled microstrip slotline is
one of the fundamental structures of the double-sided MIC. The
structure is as follows: the stripline is on one side of the dielectric
substrate and the slotline is on the other side. The coupled
stripline slotline has properties that the dispersion characteristics
and the characteristic impedance are controlled sensitively and
extensively by changing the geometrical dimension. The design of
the directional coupler by use of the microstrip slotline was
proposed by F. C. de Ronde in 1970, [1} its theoretical considera-
tion was given by B. Schiek, [2], [3], the synthetic method of the
design and experimental results were performed by H. Ogawa,
[4], [5], and the design with compensation slotlines and the
comparison with the experiment were presented by R. K.
Hoffmann [6], [7]. The conventional MIC based on the stripline
has been treated by a two-dimensional analysis. But, the coupled
microstrip slotline is essentially a three-dimensional structure, so
the analysis demands a rigorous three-dimensional treatment.
Also, the recent development of high-speed pulse techniques
demands the analysis in the time domain. The transient analysis
of the electromagnetic field is not only useful in clarifying the
field response but also yields information on the mechanism by

Manuscript received June 18, 1985; revised October 18, 1985,

The authors are with the Faculty of Engineering, Hokkaido University,
Sapporo, 060 Japan.

IEEE Log Number 8406856.

0018-9480,/86 /0300-0353$01.00 ©1986 IEEE



